If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2+16n-4=0
a = 6; b = 16; c = -4;
Δ = b2-4ac
Δ = 162-4·6·(-4)
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{22}}{2*6}=\frac{-16-4\sqrt{22}}{12} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{22}}{2*6}=\frac{-16+4\sqrt{22}}{12} $
| 42/3=1/2x | | s=1/9+5/18 | | 5+6n=8n-9 | | -8(n+3)-(9+7n)=-16n | | 6a^2+12a-210=0 | | 3x+4(5x+8)=170 | | 2x+25+10=x+23 | | 7n+3=53 | | -9-5q=-6q | | 13=4+c | | -2+8m+7m=14+7m | | 9h=10+7h | | .3x=1/2x-8 | | 3^8x=11 | | -13=s/6 | | (3)+(7x+1)=10x+1 | | 0=-2x^2+36x | | 8+3x=8-4x | | 6.1-0.25(x=8)=0.7x=0.3(x-3) | | -5(-1-6v)=-145 | | -1/12+r=3/4 | | 12.5+.4x=14.75+.25x | | -9.5x+0.36=-3.44 | | 2/3(2x-9)=6 | | 9x+3=-2x+92 | | 3/4z=41/2 | | 3k^2-3k-126=0 | | 150m-125+35175=33950-150 | | 3m+7m=5m-6+6m | | 10+4x+20=-2(3x-5) | | 5m+22=9m-2 | | 1/2x+1=-2 |